International Union of Pure and Applied Chemistry Physical Chemistry Division, Commission on Biophysical Chemistry Analytical Chemistry Division, Commission on Electroanalytical Chemistry Electrochemical Biosensors: Recommended Definitions and Classification

نویسندگان

  • KLARA TOTH
  • RICHARD A. DURST
  • GEORGE S. WILSON
چکیده

Two Divisions of the International Union of Pure and Applied Chemistry (IUPAC), namely Physical Chemistry (Commission I.7 on Biophysical Chemistry, formerly Steering Committee on Biophysical Chemistry) and Analytical Chemistry (Commission V.5 on Electroanalytical Chemistry), have prepared recommendations on the de®nition, classi®cation and nomenclature related to electrochemical biosensors; these recommendations could, in the future, be extended to other types of biosensors. An electrochemical biosensor is a self-contained integrated device, which is capable of providing speci®c quantitative or semi-quantitative analytical information using a biological recognition element (biochemical receptor) which is retained in direct spatial contact with an electrochemical transduction element. Because of their ability to be repeatedly calibrated, we recommend that a biosensor should be clearly distinguished from a bioanalytical 2334 COMMISSIONS ON BIOPHYSICAL CHEMISTRY AND ELECTROANALYTICAL CHEMISTRY q 1999 IUPAC, Pure Appl. Chem. 71, 2333±2348 system, which requires additional processing steps, such as reagent addition. A device which is both disposable after one measurement, i.e. single use, and unable to monitor the analyte concentration continuously or after rapid and reproducible regeneration should be designated a single-use biosensor. Biosensors may be classi®ed according to the biological speci®city-conferring mechanism or, alternatively, the mode of physicochemical signal transduction. The biological recognition element may be based on a chemical reaction catalysed by, or on an equilibrium reaction with, macromolecules that have been isolated, engineered or present in their original biological environment. In the latter case, equilibrium is generally reached and there is no further, if any, net consumption of analyte(s) by the immobilized biocomplexing agent incorporated into the sensor. Biosensors may be further classi®ed according to the analytes or reactions that they monitor: direct monitoring of analyte concentration or of reactions producing or consuming such analytes; alternatively, an indirect monitoring of inhibitor or activator of the biological recognition element (biochemical receptor) may be achieved. A rapid proliferation of biosensors and their diversity has led to a lack of rigour in de®ning their performance criteria. Although each biosensor can only truly be evaluated for a particular application, it is still useful to examine how standard protocols for performance criteria may be de®ned in accordance with standard IUPAC protocols or de®nitions. These criteria are recommended for authors, referees and educators and include calibration characteristics (sensitivity, operational and linear concentration range, detection and quantitative determination limits), selectivity, steady-state and transient response times, sample throughput, reproducibility, stability and lifetime. 1. DEFINITION AND LIMITATIONS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000